
Received 27 June 2022, accepted 9 August 2022, date of publication 18 August 2022, date of current version 29 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3199882

PermPress: Machine Learning-Based Pipeline to
Evaluate Permissions in App Privacy Policies
MUHAMMAD SAJIDUR RAHMAN 1, PIROUZ NAGHAVI1, (Graduate Student Member, IEEE),
BLAS KOJUSNER1, SADIA AFROZ2, BYRON WILLIAMS1, SARA RAMPAZZI 1, (Member, IEEE),
AND VINCENT BINDSCHAEDLER1, (Member, IEEE)
1Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32603, USA
2Avast Software, Emeryville, CA 94608, USA

Corresponding author: Muhammad Sajidur Rahman (rahmanm@ufl.edu)

ABSTRACT Privacy laws and app stores (e.g., Google Play Store) require mobile apps to have transparent
privacy policies to disclose sensitive actions and data collection, such as accessing the phonebook, camera,
storage, GPS, and microphone. However, many mobile apps do not accurately disclose their sensitive data
access that requires sensitive (‘dangerous’) permissions. Thus, analyzing discrepancies between apps’ per-
missions and privacy policies facilitates the identification of compliance issues uponwhich privacy regulators
and marketplace operators can act. In this paper, we propose PermPress – an automated machine-learning
system to evaluate an Android app’s permission-completeness, i.e., whether its privacy policy matches its
dangerous permissions. PermPress combines machine learning techniques with human annotation of privacy
policies to establish whether app policies contain permission-relevant information. PermPress leverages
MPP-270, an annotated policy corpus, for establishing a gold standard dataset of permission completeness.
This corpus shows that only 31% of apps disclose all dangerous permissions in privacy policies. By lever-
aging the annotated dataset and machine learning techniques, PermPress achieves an AUC score of 0.92 in
predicting the permission-completeness of apps. A large-scale evaluation of 164, 156 Android apps shows
that, on average, 7% of apps do not disclosemore than half of their declared dangerous permissions in privacy
policies, whereas 60% of apps omit to disclose at least one dangerous permission-related data collection in
privacy policies. Our investigation uncovers the non-transparent state of app privacy policies and highlights
the need to standardize app privacy policies’ compliance and completeness checking process.

INDEX TERMS Privacy policy, android apps, data privacy, NLP, machine learning, annotated dataset.

I. INTRODUCTION
Users need transparent and truthful app privacy policies to
understand what sensitive data apps collect and how the
apps may use that sensitive data. Unfortunately, mobile app
privacy policies are often vague and incomplete despite data
privacy laws requiring mobile apps to have transparent and
trustworthy privacy policies. For example, in 2013, the Fed-
eral Trade Commission (FTC) fined social media app com-
pany Path Inc. for using vague, slippery language in the app’s
privacy policy to describe its data collection, especially when
the app accesses a user’s phonebook [1]. FTC found the

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio J. R. Neves .

language in Path’s privacy policy, for example – ‘‘We auto-
matically collect certain information. . . such as your Internet
Protocol (IP) address, your operating system. . . ’’ – to be an
incomplete and inadequate illustration of data access and
collection by the app [2]. In 2021, Ireland’s Data Protection
Commission fined WhatsApp Inc., a messaging company,
a record fine of e225 million for failing to be transparent in
its privacy policy about how it handled personal information
and shared it with first/third parties [3].

Since 2012, mobile app marketplaces (e.g., Android Play
Store, iOS App Store) have started mandating app publish-
ers to list links of privacy policies both in the marketplace
app listing pages and inside apps [4]. The Android plat-
form specifically requires apps that request any sensitive or

89248
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-8965-6732
https://orcid.org/0000-0002-3630-6269
https://orcid.org/0000-0001-5433-6667

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

dangerous permissions, such as contact list, camera, stor-
age, location, or microphone, to have a transparent privacy
policy. However, marketplaces only check whether the app
has listed a ‘URL’ of a privacy policy but do not verify its
content, i.e., whether the privacy policy fully discloses the
app’s permission-based sensitive data collection. Analyzing
a privacy policy is challenging for two reasons: First, under-
standing/extracting useful information from privacy policies
is difficult because privacy policies are written in natural
language with vague, complex, and lengthy texts [5]. Sec-
ond, app developers often look for workarounds, such as
using privacy policy templates/generator services to generate
boilerplate privacy policies to expedite app publishing [6].
As these boilerplate privacy policies are often generic and
are not necessarily written for a particular app, they may not
conform to requirements set by privacy laws [7]. Evaluating
discrepancies between apps’ requested permissions and pri-
vacy policies enables regulators and marketplace operators to
identify apps’ potential compliance issues earlier than later
from unexpected privacy breaches.

A. RESEARCH QUESTIONS
We seek to investigate if an app’s privacy policy is
permission-complete. A privacy policy is permission-
complete if it discloses the processing of sensitive
data and performing sensitive actions related to danger-
ous Android permissions. In other words, the policy is
permission-complete if it matches the dangerous permissions
that the app declares in the manifest file. We introduce
PermPress – an automatedmachine-learning (ML) system for
checking the Permission-Privacy Completeness of Android
apps. The following research questions guide the design,
implementation, and use cases of PermPress:
• RQ1: Do app privacy policies disclose sensitive infor-
mation collection via dangerous Android permissions?
(§ IV). Prior works focus on either web privacy policies
(e.g., [8], [9]) or on identifying first- and third-party data
collections (e.g., [10], [11], [12]). There exists no sys-
tematic investigation into whether app privacy policies
contain meaningful and relevant information about all
of their declared permissions. Answering RQ1 helps fill
this gap and advance understanding of the completeness
of app policies.

• RQ2: Can we apply machine learning techniques to
infer dangerous permissions from app privacy policies?
(§ V). Prior works [10], [11], [12], [13], [14], [15],
[16] often take an overly narrow focus on a subset of
Android permissions, such as those related to access-
ing location or device identifiers, while ignoring other
(potentially harder to predict from the privacy policy)
permissions (e.g., accessing camera or phonebook).
Thus, it is unclear how best to leverage machine learning
models for permission inference from app policies and
what combination of techniques yields the most accurate
model.

• RQ3: Can we calculate an app’s permission-
completeness score and predict it? (§ VI).We emphasize

that accurately predicting if a privacy policy is complete
and transparent (including where mismatches happen)
allows users (e.g., privacy regulators, marketplace oper-
ators, app publishers/developers) tomake thoughtful pri-
vacy decisions about an app. For example, marketplace
operators can use an automated system like PermPress
to identify discrepancies in requested permissions and
policy before publishing an app, thus forcing app pub-
lishers to comply with privacy laws and marketplace
policies. Moreover, PermPress complements prior app
policy analysis works (e.g., [10], [11]) by measuring the
incompleteness of app policies in an automated way.

B. KEY CONTRIBUTIONS
We leverage PermPress, which consists of a two-phase
machine learning-based pipeline to infer permission-
completeness based on app privacy policies andmanifest files
to answer the research questions. In the first phase, we apply
the natural language processing (NLP) technique with super-
vised machine learning models to predict an app’s dangerous
permissions from its privacy policy. In the second phase,
we leverage the trained models and their predictions from
phase-1 to predict a permission-completeness label accu-
rately, i.e., a (mis)match between an app’s declared permis-
sions and privacy policy. To create an accuracy baseline for
PermPress, we develop a gold-standard policy corpus named
‘Mapping between Permission and Privacy’ (MPP-270).
This annotated corpus establishes whether privacy policies
contain relevant information about apps accessing dangerous
permissions to collect sensitive data. We find that only 31%
of apps in the MPP-270 corpus contain complete and relevant
information about all dangerous permissions declared in their
manifest file. Outside of the 31%, all apps disclose at least
one dangerous permission-related data collection in privacy
policies. Permission-relevant information about CALENDAR,
SMS, and CONTACTS are rarely found (<50%) in privacy
policies, whereas PERSISTENTID and LOCATION are fre-
quently mentioned (≥ 90%). By leveraging the gold-standard
dataset and machine learning techniques, PermPress achieves
an AUC score of 0.92 to predict the permission-completeness
for an app. PermPress conducts a large-scale evaluation of
164,156 Android apps and finds that, on average, 7% of
apps across all app categories do not disclose more than
half of their declared dangerous permissions in privacy poli-
cies. 60% of apps omit to disclose at least one dangerous
permission-related data collection in privacy policies. Using
LIME [17] (§ V-C), we investigate prediction behavior of
machine learning models (FastText and logistic regression).
This exploration with model explainability provides insights
about cases when privacy policies do not contain meaningful
information about the target class (i.e., permission) and when
multiple apps share the same policy, irrespective of differing
permissions in manifest files.

We believe that PermPress holds promise in uncovering
the non-transparent state of app privacy policies and automat-
ing the compliance checking process for end-users like pri-
vacy regulators, marketplace operators, and app publishers/

VOLUME 10, 2022 89249

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

developers. We are the first to systematically evaluate app
privacy policies and identify the relevant features that explain
Android apps’ dangerous permission-based data collection
from privacy policies. By combining human annotation
with state-of-the-art machine learning and NLP techniques
to extract features from natural language privacy policies,
PermPress can facilitate ‘Usable Privacy’ research to model
end-user privacy preferences.

In summary, we make the following contributions:
1) MPP-270 corpus (§ IV). This paper performs the first sys-

tematic mapping study between the app privacy policy and
Android permissions bymanually annotating 270Android
app policies. It is the only annotated app policy corpus
that maps all dangerous permissions to privacy policies.
The MPP-270 corpus and the machine learning dataset
consisting of 164,156 apps’ metadata are open-source [18]
for further research.

2) Model benchmarking and explainability (§ V). This
paper systematically examines the information richness
of privacy policies by applying three different machine
learning models (logistic regression, FastText, BERT)
and comparing these models’ predictive performance.
We find that models with a sophisticated word- and
context-embedding techniques outperform feature-based
embedding, even when positive samples are the minority.
This paper also leverages LIME (§ V-C) to explain model
predictions.

3) Machine learning-based pipeline (§ VI). This paper
proposes PermPress – a scalable machine learning-based
pipeline to automatically infer an app’s permission-
completeness label based on the privacy policy and app
manifest file. Our analysis has found broad evidence of
privacy non-compliance across all permission groups and
Android apps from all categories.

II. BACKGROUND
In this section, we briefly describe sensitive data in the con-
text of smartphones, the Android permission model, and the
difference between a web privacy policy and an app privacy
policy.

A. PRIVATE DATA IN MOBILE DEVICES
Data in smartphones can be classified based on information
type and data source [19]. Based on either the information
type or the source, a piece of information on smartphones can
be deemed private if it can be exploited to identify or profile a
user. Such data may include device ID, contacts, pictures, and
location coordinates. Additionally, seemingly non-sensitive
data can be mined and analyzed to infer personal information,
which could turn out to be sensitive and private.

B. ANDROID PERMISSION MODEL
In Android, Java API Frameworks form the building blocks
for the app developers to create Android apps by simplifying
the reuse of core, modular system components, and services.
App permissions help support user privacy by protecting
an app’s access to (i) restricted data, such as system state

and a user’s contact information, and (ii) restricted actions,
such as connecting to a paired device and recording audio.
Based on the scope of restricted data and restricted actions,
Android categorizes permissions into different types, includ-
ing (i) install-time permissions, (ii) runtime permissions, and
(iii) special permissions [20].

Install-time permissions (granted at install-time of apps)
allow apps to access data and actions beyond the app’s
sandbox without posing risks to the user’s privacy and other
apps’ operation. Examples are access to the internet or phone
vibration.

Runtime permissions (‘dangerous permissions’) grant an
app additional access to restricted data to allow the app to
perform restricted actions that more substantially affect the
system and other apps. Runtime permissions are assigned
with the ‘dangerous’ protection level, as runtime permis-
sions access private user data (e.g., location, phonebook)
and access to the device’s sensor- and function-rich hard-
ware (e.g., microphone, camera). In this paper, we categorize
30 permission APIs designated as ‘dangerous’ into ten func-
tionally related groups (see Table 1).

Special permissions refer to specialized app operations
that the Android platform and equipment manufacturers
(OEMs) can only define. Special permissions are assigned
with the ‘appop’ protection level. This paper only focuses
on app policy transparency about disclosing dangerous-
permission-related sensitive data access and collection. If not
specified, ‘permission’ refers to ‘dangerous permission’ in
rest of this paper.

C. PRIVACY POLICIES
Privacy laws such as GDPR [21], CalOPPA [22], CCPA [23],
and COPPA [24] require websites to disclose in web pri-
vacy policies types of personal information (e.g., names,
email addresses, shipping addresses, payment card info) web-
sites collect from their visitors/users. In addition to this list
of personal information collection, privacy laws also man-
date websites to disclose in privacy policies any ‘technical
data’ collected via tracking technologies such as cookies,
IP addresses, pixels, and browsing history. In the app privacy
policy, the app must disclose personal information collec-
tion, similar to websites. In addition, the app must dis-
close if it accesses any sensitive data or resources (e.g.,
geolocation data from GPS, photo/media gallery, device ID,
biometrics data) on the device by invoking any dangerous
permission APIs. The app must also disclose data collection
and sharing practices with third-party tools (e.g., ads and
analytics libraries) used during the app development [25],
[26]. The capability of smartphone apps to access sensitive
OS-privileged APIs (i.e., dangerous permissions) to operate
on a rich set of sensitive data increasingly raises privacy
concerns. National and international privacy regulations (e.g.,
California Consumer Privacy Act [4], European General Data
Protection [27]) thus require app privacy policy to be trans-
parent and complete regarding sensitive data collection and
sharing.

89250 VOLUME 10, 2022

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

III. METHODOLOGY
An app’s privacy policy is defined as permission-complete if
the policy discloses the processing of sensitive data and per-
forming sensitive actions related to dangerous Android per-
missions. In other words, the policy is permission-complete
if it matches the dangerous permissions that the app declares
in the manifest file.

FIGURE 1. Example of permission-incompleteness: Three out of six
dangerous permissions can be matched to the sensitive data
access/collection described in the natural language text of the privacy
policy. The remaining dangerous permission-related data collection is not
disclosed in the app privacy policy.

For example, consider ‘Chase Mobile’ (Fig. 1), a mobile
financial service app. The app declares six ‘dangerous
permissions’ for its functionality, but only three danger-
ous permission-related data collection practices (device
identifiers, approximate location, and precise location) are
disclosed in the privacy policy. The privacy policy does
not disclose any data access/collection using CAMERA,
CONTACTS, and STORAGE permissions. Presumably, the
app needs CAMERA permission for mobile check deposits.
However, the app privacy policy makes no references to
information collected from the phone’s camera or how it is
processed or shared. Based on the definition of permission-
completeness, it can be said that this privacy policy only par-
tially matches with the app’s declared dangerous permissions.

After reviewing prior works [10], [11], [12], [13], [14],
[15], [16], three significant shortcomings are found: First, the
automated analysis approach often looks for sensitive data
collection in privacy policies that may not be directly linked
with Android’s permission-based model of data collection
(e.g., data collection during the user registration process, such
as email, zip code, city, home address). Second, prior works
often narrowly focus on a subset of permissions such as
PERSISTENTID or LOCATIONwhile ignoring permissions
– that are potentially harder to predict from the privacy policy
– such as accessing the camera or the phonebook (see § IX
for details about prior works). It is thus unclear whether app
privacy policies are transparent about their complete set of
declared, sensitive permissions. Third, in the absence of a
way to map between app privacy policy text and Android’s
permission-based data collection model, it is challenging

to identify the cause of failed prediction: the model or the
incomplete privacy policy.

In contrast to prior works, PermPress combines machine
learning techniques with an initial step of policy annotation,
where human evaluators annotate a sample of apps to estab-
lish whether privacy policies contain meaningful, relevant
information about Android apps’ sensitive permission-based
data collection model. This annotated corpus then serves as
a gold standard to evaluate machine learning models’ predic-
tion performance (phase-1) and a labeled dataset for training
and validating machine learning models to infer permission-
completeness (phase-2).

Fig. 2 outlines the three tasks to perform for answering the
research questions and to build PermPress:

• Task-1 answers RQ1 (do app privacy policies disclose
sensitive information collection via dangerous Android
permissions?) by systematically annotating a corpus to
establish whether privacy policies contain meaningful,
relevant information about apps accessing dangerous
permissions to collect sensitive data.

• Task-2 answers RQ2 (can we apply machine learning
techniques to infer dangerous permissions from app
privacy policies?) by creating a benchmark of machine
learning models to predict permissions from privacy
policies.

• Task-3 answers RQ3 (can we calculate an app’s
permission-completeness score and predict it?) by
building PermPress through leveraging results from
tasks 1 and 2.

The following sections provide in-depth discussion on
the experimental setup for each task (task-1:§ IV, task-
2:§ V, task-3:§ VI). Before delving into experimental details,
the following is a discussion of the data collection and an
exploratory analysis of the dataset.

A. DATASET
A Python-based scraper was implemented to scrape the
Google Play Store (USA market) to collect app meta-
information (app ID, app rating, number of installs, privacy
policy link) from diverse app categories between December
2020 to February 2021. During this time, 500,000 apps’ meta-
information was collected. Subsequently, the apps’ privacy
policies were scraped by following the privacy policy links
collected in the first phase. Before downloading a docu-
ment, the scraper checked whether the document contained
the phrase ‘privacy policy’ and had at least ten sentences.
The scraper leveraged the NLTK library’s [28] parsing and
language detection functions to check whether the texts are
in the English language. After discarding non-English and
unreachable privacy policies, 213,000 app privacy policies
were finally collected. Next, a separate scraper started to
download the application packages (APKs) for these 213,000
apps from Google PlayStore and finally downloaded 164,156
usable APKs. Using the AndroGuard [29] reverse engineer-
ing tool, the downloaded APKs were decompiled to extract

VOLUME 10, 2022 89251

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

FIGURE 2. Experimental setup used to investigate permission-completeness of app privacy policies. PermPress leverages both the outcomes from tasks
1 and 2 to accurately predict completeness label of an app (task 3), based on the privacy policy and manifest file.

FIGURE 3. Distribution of dangerous permissions in the final dataset of
164,156 apps.

declared permissions from the AndroidManifest.xml
file.

In this paper, we consider the 30 permission APIs
which have ‘dangerous’ protection level in official
Android documentation [30]. Functionally related dan-
gerous APIs are grouped together (e.g., all SMS/MMS
related APIs into one group). There are ten permission
groups: CALENDAR, CAMERA, CONTACTS, LOCATION,
MICROPHONE,PERSISTENTID,PHONE_CALL,SENSOR,
SMS, and STORAGE (Table 1). Unless otherwise stated, any
reference related to ‘permission’ in this paper refers to any
of these ten dangerous permission groups. After extracting
manifest files, the dangerous permission APIs were mapped
to one of the ten dangerous permission groups. The top
three dangerous permission groups were PERSISTENTID

(97%), STORAGE (62%), and LOCATION (53%), and least
accessed permission groups (accessed by < 5% apps) were
CALENDAR, SENSOR, and SMS. The median number of
dangerous permissions accessed by apps was 3. Fig. 3 shows
the dangerous permission distribution in the collected dataset.
In the following sections, if not otherwise mentioned, the
final dataset consisted of these 164,156 APKs and their
corresponding privacy policies.

B. EXPLORATORY DATA ANALYSIS
After collecting the dataset, a data exploration was con-
ducted to investigate privacy policy-related app metadata.
Specifically, the data exploration consisted of exploring web
domains where the privacy policies are hosted. The data
exploration investigated whether multiple apps point to the
same privacy policy URL. Furthermore, the data exploration
examined whether apps sharing the same privacy policy URL
are similar in manifest files.

1) HOSTING DOMAINS OF PRIVACY POLICIES
First, the domain name was extracted from a pri-
vacy policy URL. Next, the number of apps with pri-
vacy policy URLs pointing to the same domain name
was counted. Fig. 4 shows the top 20 domain names
shared and pointed to by several hundred to thousands
of apps. The top domain name belongs to Google’s
free website hosting service, sites.google.com, with
17,000 apps (>10% of the dataset) having their pri-
vacy policies hosted there. Interestingly, the second top
domain (docs.google.com) is not a typical website,
but Google’s online document editing/publishing service

89252 VOLUME 10, 2022

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

TABLE 1. Table lists 30 dangerous permission APIs categorized in
10 permission groups. All permissions listed here (except those asterisk
marked) are marked as having protection level as dangerous in the
Official Android API Documentation [30]. ACCESS_WIFI_STATE and
ACCESS_NETWORK_STATE have been found by previous efforts to access
PII data [31], [32].

named Google Docs. Like Google Docs, app privacy poli-
cies piggyback on cloud storage and document sharing
services, e.g., GitHub repositories, GitHub Gist, Paste-
bin, and Google’s Firebase storage. Fig. 4 also presents
five domain names (freeprivacypolicy, iubenda,
myappterms, privacypolicies, termsfeed) that
provide services to generate and publish mobile app pri-
vacy policies. This variability in hosted domains shows a
lack of standardization of privacy policy creation and dis-
closure. Domains such as Google Docs, GitHub, Pastebin,
and Firebase also show that app publishers/developers often
choose a sort of ‘‘homemade’’ approach to publishing privacy
policies, i.e., the app publishers/developers take any possible
workaround to ‘host’ privacy policies to get their apps pub-
lished in the Google Play Store.

2) APP PERMISSIONS AND PRIVACY POLICY URLs
First, the apps that share the same privacy policy URL are
grouped. Then, the dangerous permission distributions of the
grouped apps are plotted. Fig. 5 shows the box-plot of per-
mission distribution of apps sharing the same privacy policy

FIGURE 4. Distribution of the top-20 domain names and the number of
apps hosting their app privacy policies under these domains. As can be
seen from the color code, there are four categories of domains in the
top-20 domain names used for hosting app privacy policies. A quarter of
these () domains belong to privacy policy generator services.
In contrast, another quarter of the domains () point to various
cloud-based document processing/sharing services. This variability in
hosted domains raises questions about the lack of standardization in
preparing and publishing app-specific privacy policies.

URL. Similar to the previous analysis with hosted domains
of app privacy policies, it is observed that a few hundred
apps share a single boilerplate privacy policy generated by
a privacy policy template service, myappterms. Besides
using boilerplate policy files, apps also plagiarize and list
other apps’ privacy policy URLs as their own. For example,
Unity3d is a popular SDK to build AR/VR/gaming features in
Android/iOS apps and is not an app by itself. Yet, Unity3d’s
privacy policy URL 1 is listed as privacy policy by 246 apps.
Further investigation found that 9 out of 246 apps are pub-
lished by ‘Unity Technologies ApS,’ the official app pub-
lisher of Unity3d; the remaining 237 apps are various gaming
apps and are not officially related to Unity3d (based on app
publishers’ websites). This phenomenon of privacy policy
plagiarism and using boilerplate templates raises questions
about the authenticity of app privacy policies.

IV. TASK 1: POLICY ANNOTATION
In this section, we provide details about app privacy pol-
icy annotation task to establish whether app policies dis-
close meaningful, relevant information about the dangerous

1Unity3d Privacy Policy:https://unity3d.com/legal/privacy-policy

VOLUME 10, 2022 89253

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

FIGURE 5. Box-plot of dangerous permission distribution in apps that
share the same privacy policy URL. Y-axis shows the domain name of a
single privacy policy URL. Next to the domain name, the number of apps
pointed to this particular URL has been mentioned. Besides URLs linked
with Myappterms, Google sites, and Blogspot, the rest belong to different
app publishers. Subsplash, an app publisher, has published only
100 apps, yet almost 1000 apps plagiarize its privacy policy. The privacy
policy URL pointed at MyAppTerms (N) has been shared by 347 apps with
requested permissions ranging from 1 to 3. The privacy policy URLs
hosted at Google sites and Blogspot (•) are examples of apps that may be
published by the same publishers (no variation in the number of
requested permissions).

permissions declared in app manifest files (see § III and
Fig. 2). Following is the methodology to create the MPP-
270 corpus to map privacy policy text snippets with relevant
permission information. We also discuss the findings and
results of the policy annotation task.

A. MPP-270: ANNOTATION PROTOCOL
Previous works on policy annotations primarily focus on
web privacy policies, not app-specific ones (e.g., [8], [9]).
Prior works also focus on first- and third-party data collec-
tions rather than sensitive permission-based data collection
(e.g., [11]). No labeled dataset maps between app permission
and privacy policy. As privacy policies are written in natural
language and are notorious for vague, complex, and lengthy
texts [5], it is challenging to understand the proper meaning
or extract useful information from the app policies. To fill
this gap and advance understanding of the completeness of
app privacy policy, the MPP-270 policy corpus is created by
annotating the privacy policies of 270 unique Android apps.
These 270 apps are sampled by ranking the dataset of 164,156
apps based on the total number of app installs and user ratings
and then selecting the top 270 apps. It is also ensured that the
selected apps cover all 13 app categories present in the larger
dataset.

We opt against crowdsourcing policy annotation task
due to the ambiguous nature of privacy policies and
the required expertise. Instead, following prior work
((Zimmeck et al. [11] used two annotators), two of the
authors with experience in Android app development and
data privacy annotated the 270 privacy policies. Initially,
the annotators randomly selected and annotated 10 privacy
policies. Afterwards, both annotators met and compared their
annotations to discuss their observations. Based on their
observations, the following annotation protocol was devised:

• An annotator would only annotate sentence(s)/text
phrases from the app privacy policy that could
logically relate to any of these dangerous permis-
sions: CALENDAR, CAMERA, CONTACTS, LOCATION,
MICROPHONE, PERSISTENTID, PHONE_CALL,
SENSOR, SMS, and STORAGE. The annotator would use
the permission name as annotation labels.

• To avoid annotatingmisleading sensitive data collection,
the annotator would only focus on those sensitive data
collection practices which can be linked to an app’s
declared dangerous permission(s) APIs found in the
AndroidManifest.xml file. The annotator would
use Table 1 to select appropriate permission group for
the app.

• The annotator would differentiate between information
collected as part of the user registration process (e.g.,
PII) versus sensitive information collected while using
the app. The annotator would not link any sensitive data
collected from user registration (e.g., name, email, zip
code, shipping address) to any dangerous permissions
unless explicitly mentioned.

• Unlike prior work [11], the annotator would not dis-
tinguish who collected data (first/third-party), rather
focused on whether sensitive data relevant to dangerous
permissions was accessed/collected.

• When the app privacy policy does not mention accessing
dangerous permissions explicitly, but rather mentions
collecting certain data, the annotator would consult with
official Android documentation to verify whether the
app needs access to a particular dangerous permission
to collect those sensitive data.

• In the privacy policy, an app often describes in length
various app features or user interactions that an app
user could perform to get services. In cases when an
app does not explicitly disclose sensitive data collection
but instead describes user interactions with the app, the
annotator would evaluate those interactions, based on
Android documentation, to check whether the interac-
tions could lead the user to grant consent to danger-
ous permission(s). For example, suppose a camera app
declares READ_STORAGE permission and talks about
photo upload functionality in the privacy policy. In that
case, the annotator could link the user interaction of
uploading photo to STORAGE permission.

After establishing the protocol, each annotator anno-
tated the remaining 260 app policies individually. It took a
month for the annotators to complete the annotation. Finally,
Cohen’s Kappa κ score [33] was calculated for each of the
ten labels (i.e., permission groups) to measure inter-rater
reliability between the two annotators. In the following sec-
tions, MPP-270 is referred to denote the annotated corpus of
270 policies.

B. RQ1: ANNOTATION RESULTS
Table 2 shows the inter-rater agreement of the annotators.
The average Cohen’s Kappa score is 0.86, which shows
strong agreement between the two raters. The lowest κ score

89254 VOLUME 10, 2022

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

FIGURE 6. Distribution of dangerous permissions and annotations in the MPP-270 policy corpus. Data collection
related to PERSISTENTID and LOCATION permissions were mentioned in 97% and 92% of the app policies,
respectively. By contrast, CALENDAR was found the least (3 out of 28 apps). CONTACTS and SMS permissions related
data access and collection were found in less than 50% of the apps’ policies.

TABLE 2. Inter-rater agreement during annotation. On average, there is a
95% agreement between the two annotators. The average Cohen’s Kappa
is 0.86, which indicates a strong agreement between raters/coders during
the annotation task.

was 0.68 for PERSISTENTID and κ score ≥ 0.90 was
achieved for LOCATION, MICROPHONE, CAMERA, and
CALENDAR permissions. A low κ score in PERSISTENTID
shows the relative difficulty in linking sensitive data to appro-
priate permissions.

The annotation finds that only 84 out of 270 apps
(31% of apps) have privacy policies that contain complete
and relevant information about all dangerous permissions
declared in apps’ manifest files. The annotation shows that
PERSISTENTID and LOCATION related data collection is
frequently mentioned in privacy policies. Out of 269 apps
with PERSISTENTID permission, 94% of them mentioned
collecting PERSISTENTID related information (e.g., IMEI,
SIM card number). Out of 233 apps with LOCATION per-
mission, 90% of apps mentioned LOCATION-related data
collection in privacy policies. Despite their frequent occur-
rence, it is challenging to link sensitive data collection to
appropriate permissions. For example, not all types of ‘device
identifiers’ can be semantically equivalent to what sensitive
data type PERSISTENTID API represents in reality. Using

PERSISTENTID API, an app can access sensitive device
identifiers such as SIM serial number or IMEI. Despite this
fact, data types such as IP address, cookies, and trackers are
often found to be referred to as ‘device identifiers’ in the app
policies, which is semantically and pragmatically incorrect
for PERSISTENTID. This challenge in linking the semantic
meaning of an API to its Android-specific pragmatics is
reflected in a lower κ score for PERSISTENTID. Besides
this challenge in semantics, because of vague language in
privacy policies, it is not always obvious how an app collects
sensitive data in reality. To illustrate this, consider the follow-
ing sentence from an app’s policy:
‘‘When you register for the Service, you provide us with

your mobile phone number, which we use as your account
identifier.’’

This sentence does not clarify how the app acquires the
phone number: through user registration of filling a form or
through requesting PHONE_CALL permission. Although this
particular app declares PHONE_CALL permission, human
annotators did not annotate this for disclosing PHONE_CALL
permission due to the vague policy language. Some of the
permissions are also harder to find in privacy policies. For
example, apps with CALENDAR permission rarely describe
about accessing/using calendar data (only three out of 28 apps
disclose this).SMS andCONTACTS are two other permissions
that were found infrequently in privacy policies - SMS being
discussed in 47% (8 in 17 apps) of policies and CONTACTS
in 40% (49 out of 122 apps). Interestingly, SENSOR was
found in 60% of privacy policies, even though less than
5% apps declared SENSOR permission. Unlike permissions
such as STORAGE, which were rarely explicitly mentioned in
privacy policies and thus are challenging to identify, SENSOR

VOLUME 10, 2022 89255

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

permission was easier to identify in privacy policies because
of using distinct keywords (e.g., ‘sensor data’). Fig. 6 shows
the distribution of app permissions declared in manifest files
and their corresponding relevant information being disclosed
(or not disclosed) in privacy policies.

V. TASK 2: INFERRING DANGEROUS PERMISSIONS
This section describes the experimental setup and results for
task-2 – predicting app permissions from privacy policies
(Fig. 2). Given the variability in privacy policy language in
describing sensitive data collection (see § IV), the goal for
this task is to understand how to leverage machine learning
models for inferring permissions based on app policies and
what combination of techniques yields the most accurate
model.

Dataset: From the initial dataset of 164,156, the 270 apps
used in MPP-270 corpus (see § IV) are held out. The remain-
ing dataset of 163,886 apps (APKs and their app policies) are
used for the following machine learning task.

A. MODEL SETUP
Machine learning is leveraged to scale the analysis by recast-
ing the problem of inferring permissions as binary classifica-
tion problems. The use of binary classifiers is chosen over
multi-label classifiers to check whether machine learning
models can learn individual target class-specific (i.e., permis-
sion) features from privacy policies, rather than inter-class
correlation. Different machine learning models with various
architectural complexity, feature selection criteria, and text
representation are used to benchmark model performance in
predicting app permissions from privacy policy text. Three
different machine learning models are trained: feature-based
model (logistic regression), word2vec model (FastText [34])
and state-of-the-art BERT [35] (Bidirectional Encoder Rep-
resentations from Transformers) language model. For model
evaluation, AUC, F1, precision, recall, and accuracy scores
are calculated for each model type. Ten binary classifiers
from each model category (logistic regression, FastText, and
BERT) are trained to predict ten permission groups. The
dataset of 163,886 apps (holding out the MPP-270 dataset)

is split into the train-validation-test sets with a 60:20:20
ratio. The same train-validation-test dataset is used for train-
ing and testing all three types of models. As can be seen
from Fig. 3, the dataset is highly imbalanced in class labels
(i.e., permissions) – permissions such as PERSISTENTID
(97%), STORAGE (62%), and LOCATION (53%) belong
to the majority class whereas CALENDAR, SENSOR, and
SMS belong to minority class (<5% apps). To handle class
imbalance and avoid overfitting, appropriate regularization
is applied for all types of model training. The ROC-AUC
score is used during cross-validation to select optimum
hyperparameters.

1) TRAINING LOGISTIC REGRESSION MODELS
CountVectorizer method from Scikit-learn [36] is used
to preprocess text data and extract meaningful features for
the inference task. Specifically, a text preprocessor is imple-
mented to remove common English stop words, punctuation,
numbers, hyperlinks, and HTML tags. This preprocessor is
passed to the CountVectorizer to conduct text pre-
processing. An English stop word list is built and passed
to the CountVectorizer method to remove stop words
and rare words. A minimum threshold is set for a word
to be included in the vocabulary if the word appears in at
least three documents (min_df=3). Lastly, an n-gram range
is set up to construct multiple n-gram features (unigram,
bigram, and trigram) to be used in the model. To retain the
most relevant and unique features for each privacy policy
document, the resultant term-frequency vector is fed into a
TfIdfTransformer function to compute tf-idf scores.
To find the best parameters for the binary classifiers for
each permission group, a cross-validated grid-search is con-
ducted over a parameter grid (regularization constant C (0.1,
0.01, 0.001, 1), penalty functions (l1 or l2, class weights)).
ROC-AUC score is used for evaluating the performance of the
cross-validated model on the validation set to tackle the class-
imbalance issue. For the cross-validation splitting strategy,
5-fold cross-validation is used. After selecting the optimum
parameters from grid-search, the models are evaluated on
the test dataset to infer permissions based on the full-policy
texts.

2) TRAINING FastText MODELS
The FastText model is a multinomial logistic regression clas-
sifier employing hierarchical softmax with stochastic gra-
dient descent and a linearly decaying learning rate, which
minimizes the model’s negative log-likelihood of the class
probability output. Note that hierarchical softmax approx-
imates full softmax loss, and hierarchical softmax loss is
meant for unbalanced classes. Based on experimentation with
the validation set, the default hyperparameters proved appro-
priate, except for the number of epochs. During hyperparam-
eter tuning, it was observed that the ROC-AUC score on the
validation set improved with more epochs. Thus, the number
of epochs was increased to 200, which also improved the
class-imbalance issue.

89256 VOLUME 10, 2022

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

3) TRAINING BERT MODELS
The pretrained BERT model [35] is chosen because of its
state-of-the-art performance on a variety of text genera-
tion and classification applications. To handle class imbal-
ance, cost-sensitive loss function [37] is implemented, which
assigns different weights to each class. To illustrate this math-
ematically, let’s assume that the model’s output is z for C no.
of classes, where

z = [z1, z2, . . . , zC]>

For a sample x with class label y, the softmax cross-entropy
loss can be calculated as:

CEsoftmax(z, y) = −log

(
exp(zy)∑C
j=1 exp(zj)

)
In this default loss calculation, each sample is treated

equally which may cause model over-classifying the larger
class(es) due to their higher prior probability. To overcome
this issue, a sample-weighted cross-entropy loss is calculated
as follows:

WCEsoftmax(z, y) = −
1
N ny

log

(
exp(zy)∑C
j=1 exp(zj)

)
The selected weight for each sample is one over the

total number of samples belonging to the class y (i.e., Nny),
which overcomes model biases of correctly classifying only
the majority class and misclassifying the minority class.
This behavior is evident in the confusion matrix and the
F1 score of the minority class on the validation set (see
Fig. 11 in Appendix). For model training, a pretrained BERT
model fromHugginface Transformer library [38] is used. The
selected BERT model has 12 transformer blocks, 768 hidden
layer sizes, and 12 self-attention heads with a case-insensitive
vocabulary size of 30,522. Ten BERT models are finetuned
for each of the ten permissions groups. One limitation of
BERT is that the sequence length is limited to 512 tokens.
Still, most of the privacy policies in the dataset are much
longer (mean, median, and mode of tokens being 2160.54,
1225, and 8637, respectively). Prior work [39] has shown that
for longer documents beyond BERT’s max sequence length,
truncating the document into smaller chunks and training the
models on truncated texts (containing key information) can
enable classification accuracy as competitive as hierarchical
methods. Following this truncation strategy, an attempt is
taken to identify text chunks from privacy policies contain-
ing only the relevant information. During annotation of the
MPP-270 corpus, it is observed that a privacy policy’s first
few words (1000 characters) are generally introductory and
not relevant to data collection. Based on this observation,
a heuristic is made to discard the first 1000 characters from
the beginning of a privacy policy and only consider the fol-
lowing 512 tokens as inputs for BERT models. After apply-
ing this heuristic on MPP-270 and examining the truncated
policies, it is found that, after truncation, 97% of the policies
contain general app description and data collection relevant
information. This truncation strategy is finally adopted for

inputs of BERT models during training, validation, and test.
A linear layer is added to the BERT output layer for the
downstream classification task. For further hyperparameter
tuning, the initial learning rate, parameters for the linear
learning rate scheduler with a warm-up, self-attention head
dropout, and residual dropout are selected according to the
results on the validation set. The initial learning rate is
selected as 1e−4 with a batch size of 64. The ROC-AUC
score is used during training to select the best-performing
model. Training is stopped after a model fails to improve the
ROC-AUC score on the validation set for three consecutive
epochs.

B. RQ2: PERMISSION INFERENCE RESULTS
The following shows machine learning models’ experimental
results to predict permissions from app policies. All models
are tested on the same test dataset of 32,000 apps and their
privacy policies. Table 3 shows a summary of the compar-
ison of model performance. FastText models achieved the
highest average AUC score of 0.92, whereas BERT models
have an average AUC score of 0.90. Logistic regression
models have an average AUC score of 0.75 and an aver-
age macro-F1 score of 0.63 with 0.85 weighted-F1 scores.
FastText models also achieved the highest macro-F1 (0.82)
and weighted-F1 (0.94) scores in the permission inference
task.

1) TEST RESULT: LOGISTIC REGRESSION MODELS
The macro AUC score for logistic regression models is 0.75,
with an average weighted-F1 score of 0.85 and an average
macro-F1 score of 0.63 (Table 3). The (macro) precision
scores show that the models have higher false positive rates,
especially with cases when class labels are highly imbal-
anced. For example, PERSISTENTID has majority samples
belonging to positive class, whereas SMS has positive sam-
ples belonging to minority class. It is found that logistic
regression models generally show high false positive rates
with low false negative rates. Table 5 in Appendix presents
weighted- precision and recall scores of all logistic regression
models.

2) TEST RESULT: FastText MODELS
TheAUC,macro-, andweighted-F1 scores of the ten FastText
binary classifiers provided in Table 3 demonstrate that the
models are learning to determine if the information in the
text of a privacy policy indicates whether an app is using
dangerous permissions. The lowest AUC scores for SMS
(0.88) and PERSISTENTID (0.89) suggest that learning
becomes difficult when the classes (positive or negative)
are imbalanced. The macro-F1 score also highlights similar
trends that the FastText model’s objective function may be
sub-optimal when the minority class is very small (e.g., SMS,
PERSISTENTID). Interestingly, the high scores of AUC
and macro-F1 for SENSOR, which also has a very small
positive class, suggest that the privacy policy contains certain
text features that allow the model to learn to recognize if
an app is requesting access to SENSOR permission. This

VOLUME 10, 2022 89257

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

TABLE 3. Comparison of model performance in the task of inferring dangerous permissions from the app privacy policy. The rows are arranged in
descending order of AUC scores for Logistic Regression models. Logistic regression models have an average AUC score of 0.75 and an average macro-F1
score of 0.63 with 0.85 weighted-F1 scores. FastText models achieved the highest average score of 0.92, whereas BERT models have an average AUC
score of 0.90. FastText models also achieved the highest macro-F1 (0.82) and weighted-F1 (0.94) scores in the permission inference task.

behavior is likely due to the unique keywords often used in
privacy policies to specify access to the SENSOR permission
group, which is observed during policy annotation. Macro-
and weighted- precision, recall and accuracy scores are listed
in Appendix (Table 6).

3) TEST RESULT: BERT MODELS
The average AUC score for BERT models is 0.89, making
it clear that BERT models are learning to recognize if a
privacy policy describes using a particular dangerous permis-
sion. Despite constraints on the input sequence length, BERT
models are on par in performance with FastText models based
on AUC and weighted-F1 score (Table 3). Similar to FastText
models, BERT models outperform logistic regression mod-
els in accuracy, precision, and recall scores, and have been
found effective in handling class-imbalance. For example,
both FastText and BERT models appear to learn and detect
positive samples, even though the samples are very rare (e.g.,
apps with SMS permissions). Fig. 11 in Appendix presents
a side-by-side comparison of FastText and BERT models
to predict MICROPHONE, SMS, and STORAGE permissions.
Table 7 in Appendix shows accuracy, precision, and recall
scores.

C. MODEL EXPLAINABILITY
To better assess how the trained model performs with respect
to real-world privacy policies, the model’s predictions are
compared with the annotations made by the human annota-
tors. LIME [17] is employed to explain models’ prediction
behaviors after randomly selecting three apps from the MPP-
270 corpus to examine machine learning models in three
cases: the model predictions exactly match with ground truth
(true positive), the model predictions contain false positives,
and the model predictions contain false negatives. For each
case, logistic regression and FastText models are selected.
Note that the ground truth for a permission prediction is based
on the declared permission in the app manifest file.

1) TELEGRAM MESSENGER – TRUE POSITIVE
Telegram is an instant messaging and video calling app.
During policy annotation, Telegram’s privacy policy is found

entirely transparent and complete with its declared permis-
sions in the manifest file. For model explainability, FastText
and logistic regression models trained to predict CONTACTS
permission are chosen, since CONTACTS permission is rarely
mentioned in privacy policies. Fig. 7 shows the LIME output
for the logistic regression model. It is observed that during
this prediction, the dominated text features picked up by
the logistic regression model overlap with human annota-
tion. The logistic regression model emphasizes text features
such as ‘contacts, personal, chat’ and predicts CONTACTS
permission with 96% probability. These features coincide
with the sentences annotated by human annotators during the
policy annotation task. During FastText model’s prediction
for CONTACTS, it is also observed that the model puts more
weight on those text features which overlap with human
annotation.

2) PayTM – FALSE NEGATIVE
PayTM is a money transfer and billing app that requests nine
out of the ten dangerous permissions. However, during anno-
tation, it is found that the app’s privacy policy disclosed only
two permission-related data collections (i.e.,PHONE_CALL,
LOCATION). One of the undocumented permissions is SMS.
SMS permission is selected to investigate what the machine
learning models would predict when permission-relevant
information is missing in the privacy policy. During model
explainability, the logistic regression model for SMS made
a false-negative prediction with an 80% probability of not
requesting SMS permission. This prediction, although incor-
rect, matches with human evaluation as human annotators
did not find any SMS-permission relevant information in
PayTM’s privacy policy. On the other hand, the FastText SMS
model correctly predicts the app requesting SMS permission.
Investigating the FastText model’s prediction behavior with
LIME shows that the features associated with this prediction
are irrelevant from a human point of view. For example,
FastText correlates features such as ‘platform, event, regu-
lation’ to predict SMS permission, yet these features do not
necessarily indicate SMS permission from a human point of
view.

89258 VOLUME 10, 2022

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

FIGURE 7. Example of LIME output to explain logistic regression model’s prediction for CONTACTS permission used in ‘Telegram’
app. Human annotators annotate those texts highlighted in , and LIME highlights texts in . As the figure shows, human
annotation overlaps with key features associated with the logistic regression model for predicting CONTACTS permission.

3) SOLO LAUNCHER – FALSE POSITIVE
Solo Launcher is a mobile app to personalize the look and
feel of phone features. During annotation, it is found that
this app’s privacy policy contains permission-relevant infor-
mation not requested by the app (false positive). For exam-
ple, the privacy policy documents accessing phone book
information, yet the app does not declare CONTACTS per-
mission in the manifest file. Using LIME, it is found that
both logistic regression and FastText models predict the app
‘requesting’ CONTACTS permission, based on the app’s pri-
vacy policy. The models make this false-positive prediction
for CONTACTS because of text features such as ‘phone calls,
users’ contact, contacts’ present in the privacy policy.

VI. TASK 3: PERMISSION-COMPLETENESS LABEL FOR
APP PRIVACY POLICY
This section presents the formal definition of the permission-
completeness score and presents how PermPress lever-
ages MPP-270 dataset (§ IV) and machine learning

models trained for permission prediction (§ V) to infer
permission-completeness of an app’s privacy policy (Fig. 2).

A. PermPress: MACHINE LEARNING-BASED PIPELINE TO
CHECK PERMISSION-COMPLETENESS
1) PERMISSION-COMPLETENESS SCORE
An app’s permission-completeness score is defined by
Jaccard’s similarity score. Specifically, the permission-
completeness score is calculated as

permission-completeness score = |A ∩ B|/|A ∪ B|

where A is the set of dangerous permissions declared in app
manifest file and B is the set of those permissions that can be
intuitively derived from the natural language text of privacy
policy. Both sets A and B contain binary values (0: absence
and 1: presence of a permission) and both sets havemaximum
size of ten. The permission-completeness score is guaranteed
to be between 0 and 1, where 1 indicates a complete match
and 0 indicates a complete mismatch. Based on the score, the
permission-completeness label for an app is defined: label 0
(poor) for score < 0.5, label 1 (average) for score < 1 but
≥0.5, and label 2 (excellent) for score = 1.

2) DATASET AND MACHINE LEARNING MODEL
The annotated corpus MPP-270 is leveraged to calculate the
permission-completeness score and corresponding labels.
The MPP-270 can be considered the gold standard because
the privacy policies in the corpus are manually reviewed and
mapped with declared permissions in manifest files. After
calculating the permission-completeness score for apps in
the MPP-270 corpus, the following distribution of complete-
ness labels is observed: 24 apps with label 0, 161 apps
with label 1, and 85 apps with label 2. Subsequently, the
trained machine learning models from § V are reused and

VOLUME 10, 2022 89259

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

FIGURE 8. Machine learning-based pipeline to infer permission-completeness labels for an app privacy policy. First, binary classifiers (ten BERT and ten
FastText models) are used to predict ten dangerous permission groups based on the app privacy policy. Next, a permission vector M is constructed by
reverse-engineering the app. The input features are then prepared for predicting the permission-completeness label by concatenating the predicted
probability vector P with the declared dangerous permission vector M . The subscripts F and B in P refer to the corresponding prediction probabilities
from FastText and BERT models. Based on the input features, the model predicts a permission-completeness label (poor, average, and excellent) for the
app’s privacy policy.

applied to the MPP-270 dataset to infer the dangerous per-
mission probabilities based on the apps’ privacy policies.
Permission probabilities from FastText and BERTmodels are
only considered as they outperform logistic regression mod-
els in predicting permissions. These predicted probabilities
and declared dangerous permissions extracted from manifest
files are stacked together to construct feature vectors. Fig. 8
shows the PermPress machine learning-based pipeline to
infer permission-completeness label.

The feature vector v can bemathematically presented using
v =

〈
pij, mj

〉
for all i ∈ T , j ∈ G where,

• G is the set of the ten permissions and T is the set of
models (FastText and BERT)

• pij is the likelihood of an app using a permission belong-
ing to one of the ten permission groups, as predicted by
the model, and

• mj represents binary value (0 or 1) based on whether a
corresponding dangerous permission is declared in app
manifest file.

3) MODEL TRAINING
Three types of classifiers (logistic regression, random forest,
and gradient boosting) were trained with five-fold cross-
validation to predict the permission-completeness labels:
label 0 (poor), label 1 (average), and label 2 (excellent). Out
of the 270 annotated app dataset, 200 apps were randomly
sampled for training. Their declared dangerous permissions
from app manifest files and class probabilities of those per-
missions from FastText and BERT models were used as
feature vectors (Fig. 8). The remaining 70 apps were used as
the test set.

B. RQ3: PERMISSION-COMPLETENESS RESULTS
A grid search was performed to find the optimal classi-
fier. Gradient boosting classifier achieved the highest AUC
score of 0.92 with a macro F1-score of 0.78 and a weighted
F1-score of 0.83. The following hyperparameters provided
the best scores for gradient boosting classifier: number of
estimators = 370, learning rate = 0.12, max_depth = 4,
and criterion = MSE. The predictor’s accuracy on the test
set is 83%, demonstrating the classifier’s performance in
accurately predicting permission-completeness labels. Fig. 9
highlights the classifier’s ability to distinguish between the
three completeness-labels in the presence of class imbalance.
Although the majority of the samples in the test set belong
to label 1, Fig. 9 shows that a larger portion of samples
belonging to label 0 and 2 are classified correctly. For label 2,
which corresponds to perfectly complete privacy policies,
75% of the samples are labeled correctly by the classifier on
the test set.

Large-scale evaluation. We apply PermPress on the
32,000 apps from task-2 (used as test dataset, see details §-V).
Only 33% apps are observed to have a perfect completeness-
label 2 – meaning their privacy policies are complete (‘excel-
lent’) and contain relevant information about their declared
permissions in manifest files. Approximately 7% of apps
have completeness-label 0, referring to their ‘poor’ condition
of privacy policies that these apps do not disclose more
than half to none of their dangerous permission-related data
collection. The largest group of apps (≈60%) have ‘average’
privacy policies (completeness-label 1) – they disclose at least
half of their dangerous permission-related data collection
in privacy policies, but not all of their declared dangerous
permissions. From Fig. 10, it is observed that over 50% of

89260 VOLUME 10, 2022

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

FIGURE 9. Confusion matrix of the Gradient boosting classifier on the
70 apps of the test set. The classifier correctly labels more than half of the
samples in each class.

apps across all app categories have ‘average’ privacy poli-
cies, i.e., they do not disclose all of their dangerous permis-
sions in privacy policies, which is concerning. Apps with
incomplete privacy policies may receive a monetary penalty
and lose customer trust. Moreover, an adversary can hide
the sensitive data collection by creating incomplete privacy
policies and fooling end-users. Prior works have found pri-
vacy non-compliance in a limited set of permission groups
(e.g., 41% of 9,050 apps not disclosing location data collec-
tion and sharing [10]). The analysis of PermPress uncovers
broader evidence of privacy non-compliance in all permission
groups and apps from all categories. Unlike prior works (e.g.,
[10], [11]), PermPress shows that app policies are incomplete
and demonstrates how to measure incompleteness in an auto-
mated way.

VII. DISCUSSION
A. SEMANTICALLY-RELEVANT INFORMATION IS OFTEN
MISSING
Searching for permission-relevant information in privacy
policies is challenging for humans due to the difference in

pragmatic meanings of dangerous Android permissions and
the natural language text describing the privacy implica-
tions of granting these permissions. During policy annota-
tion, it is observed that Android permissions are often not
documented directly by their names. Instead, permission-
related information is often buried implicitly either in the
types of sensitive data collected or in the description of the
app’s functionalities. As an example of semantic confusion
between permission and privacy policy text, ‘push notifica-
tion’ in the app privacy policy is unrelated to SMS/MMS
permissions (e.g., RECEIVE_WAP_PUSH). In Android API
pragmatics, push notification is a cloud-based notification
messaging system to drive user re-engagement and reten-
tion [40]. It does not involve invoking any dangerous per-
missions. To avoid such ambiguity and be guided by the
pragmatic meanings of Android permissions, in this paper,
human annotators decide to apply permission labels to those
sentences that may indicate an app functionality that can only
be logically achieved via accessing dangerous permission.
To illustrate this, the annotators decide to apply STORAGE
labels to sentences that mention‘ uploading pictures.’ This
rationale is based upon the pragmatic realization that an app
needs access to photo/media storage before giving a user the
option to upload pictures. This observation of the subtlety
between semantic and pragmatic meanings of Android per-
missions and privacy policy text is also supported by prior
work of Baalous and Poet [16]. The researchers found that
upon querying a Sent2Vec model [41] trained on app pri-
vacy policies with ‘receive wap push’ would return seman-
tically similar sentences like ‘‘This application may send
push-notifications to the user’’- which is entirely unrelated
to RECEIVE_WAP_PUSH permission. The systematic policy
annotation task described in § IV reveals that privacy policies
rarely disclose permissions by their names, semantic mean-
ing, or by the sensitive data/actions the permissions represent
in terms of Android API pragmatics.

B. MACHINE LEARNING MODELS MAY
LEARN FROM NOISE
Machine learning models may associate noisy signals to per-
mission labels during inference in the absence of relevant
information. The exploratory analysis of privacy policy URLs
(§ III-B) corroborate the fact of using recycled (one policy
to cover all apps), plagiarized (using someone else’s privacy
policy as their own), and boilerplate (privacy policy template
generators) privacy policies. This near-duplicate training data
(i.e., privacy policy text) with varying associated labels (i.e.,
dangerous permissions accessed by apps) is eventually help-
ing models put more weight on repeated text features in
privacy policies.

The model explainability experiment with LIME
(§ V-C) also supports that models with complex and robust
text-embedding capability (e.g., FastText) could associate
features that seem irrelevant to a human evaluator. Still,
the model achieves the best-performing precision and recall
scores (average macro precision 0.87 and recall 0.79). On the
other hand, it is observed that feature-based classifiers like

VOLUME 10, 2022 89261

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

FIGURE 10. Bar chart shows permission-completeness labels (0, 1, and 2)
of 32000 apps across ten app categories. The distribution of completeness
labels is uniform across app categories: ≈ 33% apps have a perfect
completeness label of 2, while the remaining apps are incomplete. Over
50% apps have ‘average’ privacy policies that do not disclose at least one
or more declared permissions. ≈ 7% apps have ‘poor’ privacy policies,
meaning they contain fewer to none of their dangerous permissions.

logistic regressionmodels can associate text features relatable
to dangerous permissions from the human standpoint. How-
ever, the logistic regression models perform poorly (average
micro precision 0.62 and recall 0.75) compared to Fast-
Text models. The primary difference is the word-embedding
technique between logistic regression and FastText models:
logistic regression models use tf-idf weighted features with a
limited vocabulary size of 30,000 without considering word
order/context. Comparatively, FastText models implement a
continuous-bag-of-words model with a word-vectorization
process similar to Word2Vec [42], thus capturing more con-
textual information than logistic regression models. While
a large vocabulary with contextual information may help
models better infer permission labels, it also restricts models
from learning meaningful information. The annotation task
shows that permission-relevant snippets constitute only a
small fraction of the app privacy policies. It can be hypoth-
esized that model performance might improve if, instead
of training models on the full text of app privacy policies,
privacy policy snippets can be used as inputs for model
training. Privacy policy snippets refer to those portions of
the privacy policies that primarily discuss data collection
and sharing. The OPP-115 [43] policy taxonomy can be
leveraged, for example, to extract privacy policy snippets by
identifying those sections of app privacy policies that describe
data collection and sharing (e.g., first-party collection and
third-party sharing).

C. NEED APP PRIVACY POLICY STANDARDIZATION
The annotation experiment (§ IV) finds that in the absence
of a standard guideline to document permission-relevant data
collection in the app privacy policies, apps often disclose
only the default sensitive data collection (Location, Persis-
tentID) but neglect to disclose other sensitive data access

and collection (e.g., face biometrics, calendar data). The
MPP-270 corpus shows which permission groups are doc-
umented more frequently than others in privacy policies.
PERSISTENTID and LOCATION permission-relevant text
snippets are found in 94% and 90% of the app policies in the
annotated corpus. CALENDAR permission appears the least;
only 3 out of 28 apps mention them. CONTACTS and SMS
permission-relevant snippets are in less than 50% of the apps’
policies. One significant difference between web and app
privacy policies is that the app must disclose all sensitive
data along with the usual disclosure of personal information
collected. For example, whether the app accesses any sen-
sitive data or resources (e.g., geolocation data from GPS,
photo/media gallery, device ID, biometrics data) by invoking
any dangerous permission APIs. The app must also disclose
data collection and sharing practices with any third-party ads
and analytics libraries used for the app development [25],
[26]. Prior works on app policy analysis often leverage
web privacy policy taxonomy, which does not account for
app-specific sensitive data collection/sharing model. It is
important to standardize the structure and organization of
privacy policy to accommodate the permission-based data
collection/sharing model. For example, the existing privacy
policy taxonomy can be revised and extended to cover the rich
set of sensitive data accessed and collected by apps through
its permission-based data collection model.

VIII. LIMITATIONS
For the policy annotation task, 270 popular apps are sam-
pled from the original dataset of 164,156 apps. However,
the ranking criteria (number of installs, user rating) could
bias the selection as the content and transparency of pri-
vacy policies could vary between popular and non-popular
apps. Another limitation is that privacy policy annotation
is a qualitative process subject to the understanding and
interpretation of individual annotators; even privacy experts
might disagree on the interpretation of privacy policies [44].
Although the annotators tried to be logical and objective
in interpreting app privacy policies, they could have dis-
carded permission-relevant snippets because of the conserva-
tive inclusion criteria. The current work focused on examin-
ing the transparency of app privacy policies and did not verify
whether apps invoked declared permissions through taint
analysis. Future work can enhance prediction performance
by combining static/dynamic analysis with the proposed
pipeline of PermPress. In this paper, we choose Android apps
for current analysis andmethodology, as Android controls the
mobile OS market with a 72.92% share [45]. However, the
current approach presented here can be further adapted to iOS
apps with minor modifications.

IX. RELATED WORK
This section presents and discusses the related work from
two dimensions: investigating the permission-driven model
and various side-channel/metadata of Android apps to detect
privacy leakage in apps and investigating privacy compliance

89262 VOLUME 10, 2022

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

checking between the app privacy policy and app behavior.
The section also discusses how this work differs from others.

A. DETECTING PRIVACY LEAKAGE IN APPS
Research in privacy leakage detection can be broadly divided
into (i) source code analysis and (ii) meta-information
analysis.

1) SOURCE-CODE ANALYSIS
The source code-analysis approach identifies code imple-
mentations in apps by instrumenting static, dynamic,
or hybrid analysis to identify the invocation of dangerous
permission APIs granted to an app. However, the app may
not call the APIs/operations exposed by the permissions
for its functional purpose, or the app might unnecessar-
ily request dangerous permission when a lower-privileged
counterpart of the dangerous permission would still pro-
vide the app’s required functionality. Source code anal-
ysis techniques attempt to identify these ‘overprivileged
apps,’ i.e., apps granted with unused or non-essential higher-
privileged permissions. For example, Felt et al. built Stow-
away [46], a static analysis tool that determines an app’s
API calls and then maps the API call to system-level per-
mission to check whether the app is overprivileged. Stow-
away is one of the earliest overprivileged-app detection tools
that systematically curated the list of dangerous permission
APIs (Android 2.2) through automatic unit test case gener-
ation for API calls, Content Providers, and Intents. Stow-
away detected permission over-privilege issues in one-third
of 940 Google Play Store apps. To improve Stowaway’s
coverage of Android APIs and create a version-independent
static analysis tool for extracting permission specifications
fromAndroid OS, PScout (compatible with Android 4.0) [47]
and later Axplorer (compatible up to Android 5.1) [48] were
built. These tools have contributed largely to building various
permission-overprivileged detection tools. Bartel et al. [49]
introduced Spark-Android to demonstrate over-privileged
apps on the Google Play Store and found that 124 out of the
679 applications declared one or more unused permissions.
RNPDroid [50] is a malware detection tool that leverages
the machine learning-based clustering technique to analyze
permissions declared by apps. It assigns risk factors (high,
medium, low, and no risk) to an app, with an accuracy
of 97.48%. SensDroid [51] improves the performance of
RNPDroid by incorporating features such as Android Intents
and permissions in developing a statistical model for malware
detection through sensitivity analysis and achieves an accu-
racy of 98.65%. There exist tools that apply various machine
learning techniques along with static or dynamic code anal-
ysis to detect Android malware, e.g., MaMaDroid [52],
Alde [53], DroidDet [54], SAMADroid [55], AVIS [56],
and AndroDialysis [57] (for a complete review of tools and
methods to detect Android malware and privacy leakage,
see [58], [59]). In contrast to these prior works on machine
learning-basedmalware analysis,PermPress provides an end-
to-end machine learning system to identify suspicious apps
based on reliable detection of incomplete privacy policies.

2) APP METADATA ANALYSIS
Besides permission analysis, prior works also analyze user
interfaces to identify sensitive user inputs and detect any
private data leakage through these user interfaces or other
related side-channels. This line of work includes, for exam-
ple, SUPOR [60], UIPicker [61], GUILeak [62], Privet [63],
IconIntent [64], DeepIntent [65], and side-channel based
leakage [31]. This line of research identifies discrepan-
cies between privacy practices described (or omitted) in
privacy policies and actual code implementation. Meta-
information-based privacy compliance checking comple-
ments static analysis with text data (e.g., app description,
code documentation, user reviews). The commonly used NLP
techniques are first-order logic [66], topic analysis [67],
and part-of-speech tagging [68] to characterize whether
apps are over-privileged with unnecessary, dangerous per-
mission APIs. Our work builds on the insights of these
previous works and complements them by empirically mea-
suring app policies’ incompleteness in disclosing dangerous
permission-related data collection practices.

B. CHECKING PRIVACY COMPLIANCE OF APPS
App privacy policies are often lengthy and filled with vague
and ambiguous language, making it difficult for humans to
read and determine the app’s data privacy practices. Recent
years have seen an increasing interest in usable privacy policy
research by combining human annotation with state-of-the-
art machine learning and NLP techniques to extract features
from natural language privacy policies to check whether apps
comply with privacy laws.

1) NLP-BASED PRIVACY POLICY ANALYSIS
For example, Sunayev et al. [69] investigated 600 popular
mHealth apps and found that only 30% of apps had privacy
policies, and two-thirds of these privacy policies did not
specifically address the app itself. Shipp and Blasco [70] ana-
lyzed 30 women’s reproductive-health apps and uncovered
that privacy policies often neglect to disclose reproductive-
health-related data, though the apps collect such data and
transfer them to remote servers. Feal et al. [71] studied
46 parental control Android apps and found that 72% of the
apps shared personal data with third parties without disclos-
ing this sharing practice in privacy policies. Onik et al. [72]
found that app publishers and associated owners could
track end-users by aggregating private data such as contact
number, biometric ID, email, location, and social graph.
Slavin et al. [14] studied privacy violations of Android apps
by developing a privacy-policy-phrase ontology and a collec-
tion of mappings from API methods to policy phrases. Using
this mapping framework, Slavin et al. evaluated 477 apps
semi-automatically and found 341 privacy violations when
apps did not disclose privacy practices in privacy policies at
all or used vague language to disclose the practice. Other
tools like PPChecker [12] detect privacy non-compliance
issues in android apps and their privacy laws. PPChecker
uses hand-coded NLP rules with parts-of-speech tagging to

VOLUME 10, 2022 89263

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

TABLE 4. Comparison of PermPress with state-of-the-art privacy compliance checking tools. Note that the reported average F1 scores reflect the
corresponding tool’s machine learning performance based on privacy policy-related task. Except for Baalous and Poet [16], these F1 scores do not
necessarily correspond to the final result of the tools, for example, the reported F1-score for PermPress refers to the permission prediction task (see § V
for details). Among these four tools, only PermPress covers all ten dangerous permission groups in its permission inference task. PermPress also releases
the largest annotated corpus (MPP-270) that systematically maps privacy policies to all dangerous permission groups. ML = Machine Learning.

identify first- and third-party data collection practices.
PermPress is significantly different from PPChecker by
demonstrating that permission-related information is not doc-
umented explicitly in privacy policies; thus, hand-derived
NLP rules are brittle to checking the completeness of privacy
policies.

2) ML-BASED PRIVACY POLICY ANALYSIS
Zimmeck et al. [10] showed the viability of combining
machine learning-based privacy policy analysis with static
code analysis of apps. Their results found that 71% of 17,991
apps that accessed sensitive data through dangerous permis-
sions did not have a privacy policy. Verderame et al. [13] built
3PDroid to evaluate 5,057 Android apps from Google Play
Store and found that 94.5% of apps are non-compliant with
the app marketplace privacy requirements, such as missing
privacy links inside apps while collecting or sharing sen-
sitive data. Luo et al. [15] studied 16,162 apps across six
Android marketplaces (Xiaomi, Baidu, 360, Tencent, Snap-
Peam, Google Play) and found a broad range of privacy
non-compliance such as lacking privacy policy links, collect-
ing private data before informing users, requesting unneces-
sarily dangerous permissions. Zimmeck et al. [11] developed
MAPS, a privacy compliance checking system that inves-
tigated 1,035,853 Android apps and found broad evidence
of potential non-compliance. Unsurprisingly, privacy policies
are often silent about the data practices of apps, and 12.1% of
such apps have at least one location-related potential com-
pliance issue. Zimmeck et al. [11] also released the APP-350
policy corpus that labels various data collection practices,
including first/third party sharing of location data access
patterns and identifier collection. One significant difference
between our work and MAPS is that PermPress systemati-
cally evaluates privacy policies to map between dangerous
permission-based data collection and natural language-based
privacy policy texts. This systematic evaluation provides
a labeled policy corpus MPP-270 to examine the limita-
tions of machine-learning models (due to incomplete privacy
policies) and build a pipeline to predict the permission-
completeness score. The systematic exploration conducted in

our work uncovers broader privacy non-compliance of apps
(67%) in multiple permission groups rather than few (e.g.,
LOCATION). Another related work is Baalous and Poet [16],
who trained a Sent2Vec model on privacy policies and later
queried themodel with a string of dangerous permission (e.g.,
READ_CONTACTS) to see if the model could retrieve useful
semantic information from privacy policies. The researchers
claimed that the model could find semantically relevant
permission information from the privacy policy for some
of the permissions, such as CAMERA and LOCATION, but
failed in other cases, such as SENSORS and CALENDAR.
In contrast, our current work empirically finds that permis-
sion information is often hidden under the description of
operational features or functions of an app, and thus find-
ing semantic information about dangerous permissions is
a challenging task for machine learning models. Table 4
shows the difference betweenPermPress and current state-of-
the-art machine learning based privacy compliance checking
tools.

X. CONCLUSION
In this paper, we propose PermPress, which is a machine
learning-based pipeline to check whether Android apps’
privacy policies match their permissions. PermPress lever-
ages a novel policy corpus named MPP-270 that allows
for (i) identifying text-based features that link between the
permission-based model of sensitive data collection to pri-
vacy disclosures; (ii) explaining machine learning model
predictions by comparing the machine learning model’s fea-
tures with human-annotated features; and (iii) establishing
ground truth to build a machine learning-based pipeline
to predict permission-completeness labels. The MPP-270
corpus reveals that CALENDAR, SMS, and CONTACTS are
rarely documented (<50%) in privacy policies, whereas
PERSISTENTID and LOCATION are frequently mentioned
(≥90%). By leveraging the MPP-270 corpus and machine
learning techniques, PermPress achieves an AUC score of
0.92 to predict the permission-completeness for an app.
A large-scale evaluation of 164, 156Android apps shows that,
on average, 7% apps do not disclose more than half of their

89264 VOLUME 10, 2022

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

TABLE 5. Results from Logistic Regression models: high false positive rates, especially in predicting permission groups where class distribution is highly
imbalanced (e.g., PERSISTENTID (majority of positive classes), SMS (minority of positive classes)). M = Macro, W = Weighted.

TABLE 6. Results from FastText models. Similarly, high false positive rates for PERSISTENTID because majority of labels are positive. Also, high false
negative rates for SMS because majority of labels are negative. M = Macro, W =Weighted.

TABLE 7. BERT models have comparatively lower precision scores than FastText models, suggesting room for improvement as BERT models have input
constraints of maximum sequence length. M = Macro, W = Weighted.

dangerous permissions in privacy policies, whereas 60% apps
omit to disclose at least one dangerous permission-related
data collection in privacy policies.We have released theMPP-
270 annotated corpus and the policy corpus of 164, 156 apps
for future research. We believe that PermPress holds promise
in uncovering the incomplete landscape of app privacy poli-
cies and automating the compliance checking process for
end-users like privacy regulators, marketplace operators, and
app publishers/developers.

APPENDIX A
PERMISSION INFERENCE RESULTS USING LOGISTIC
REGRESSION, FASTTEXT, AND BERT
See Tables 5–7.

APPENDIX B
COMPARING BERT AND FASTTEXT MODELS:
CONFUSION MATRICES
See Fig. 11.

VOLUME 10, 2022 89265

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

FIGURE 11. Confusion matrices of the FastText and BERT models, showing permission prediction performance on the test
set. The left column (a, c, e) shows FastText models, and the right column (b, d, f) shows the BERT models. From the top: the
top row (a, b) shows prediction results for MICROPHONE, the middle row (c, d) for SMS, the bottom row (e, f) for STORAGE.
Despite the highly imbalanced positive class sizes, both FastText and BERT models learn to recognize true-positive samples.
BERT models are on-par in performance with FastText models even after applying input truncation. BERT models’
performance shows support for implementing the weighted cross-entropy loss as the appropriate objective function to
handle class-imbalance issues.

REFERENCES
[1] Federal Trade Commission. FTC vs Path | Complaint For

Civil Penalties, Permanent Injunction, and Other Relief.
Accessed: Dec. 1, 2021. [Online]. Available: https://www.ftc.gov/
sites/default/files/documents/cases/2013/02/130201pathinccmpt.pdf

[2] D. J. Solove and W. Hartzog, ‘‘The FTC and the new common law of
privacy,’’ Colum. L. Rev., vol. 114, no. 3, p. 583, Apr. 2014.

[3] BBC. (Sep. 2021). WhatsApp Issued Second-Largest GDPR Fine of
225m—BBC News. Accessed: Feb. 17, 2022. [Online]. Available:
https://www.bbc.com/news/technology-58422465

[4] K. Harris. (Jan. 2013). Privacy On The Go—Recommendations for
the Mobile Ecosystem. Accessed: Nov. 28, 2020. [Online]. Available:
https://oag.ca.gov/sites/all/files/agweb/pdfs/privacy/privacy_on_the_
go.pdf

[5] A. M. McDonald and L. F. Cranor, ‘‘The cost of reading privacy policies,’’
I/S, A J. Law Policy Inf. Soc., vol. 4, no. 3, p. 543, Winter 2009.

[6] Stack Overflow. Android—What can I do About a Pri-
vacy URL? Accessed: Nov. 29, 2021. [Online]. Available:
https://stackoverflow.com/questions/13597666/what-can-i-do-about-
a-privacy-url?

89266 VOLUME 10, 2022

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

[7] R. Sun and M. Xue, ‘‘Quality assessment of online automated privacy
policy generators: An empirical study,’’ in Proc. Eval. Assessment Softw.
Eng., Apr. 2020, pp. 270–275.

[8] S. Wilson, F. Schaub, F. Liu, K. M. Sathyendra, D. Smullen,
S. Zimmeck, R. Ramanath, P. Story, F. Liu, N. Sadeh, and N. A. Smith,
‘‘Analyzing privacy policies at scale: From crowdsourcing to auto-
mated annotations,’’ ACM Trans. Web, vol. 13, no. 1, pp. 1–29,
Feb. 2019.

[9] V. B. Kumar, R. Iyengar, N. Nisal, Y. Feng, H. Habib, P. Story,
S. Cherivirala, M. Hagan, L. Cranor, S. Wilson, F. Schaub, and N. Sadeh,
‘‘Finding a choice in a haystack: Automatic extraction of opt-out
statements from privacy policy text,’’ in Proc. Web Conf., Apr. 2020,
pp. 1943–1954.

[10] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu, F. Schaub, S. Wilson,
N. Sadeh, S. M. Bellovin, and J. Reidenberg, ‘‘Automated analysis of
privacy requirements for mobile apps,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp., 2017, pp. 1–11.

[11] S. Zimmeck, P. Story, D. Smullen, A. Ravichander, Z.Wang, J. Reidenberg,
N. C. Russell, and N. Sadeh, ‘‘MAPS: Scaling privacy compliance analysis
to a million apps,’’ Proc. Privacy Enhancing Technol., vol. 2019, no. 3,
pp. 66–86, Jul. 2019.

[12] L. Yu, X. Luo, J. Chen, H. Zhou, T. Zhang, H. Chang, and H. K. N. Leung,
‘‘PPChecker: Towards accessing the trustworthiness of Android apps’
privacy policies,’’ IEEE Trans. Softw. Eng., vol. 47, no. 2, pp. 221–242,
Feb. 2021.

[13] L. Verderame, D. Caputo, A. Romdhana, and A. Merlo, ‘‘On the (Un)
reliability of privacy policies in Android apps,’’ in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2020, pp. 1–9.

[14] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Krishnan, J. Bhatia,
T. D. Breaux, and J. Niu, ‘‘Toward a framework for detecting privacy
policy violations in Android application code,’’ in Proc. 38th Int. Conf.
Softw. Eng., May 2016, pp. 25–36.

[15] Q. Luo, Y. Yu, J. Liu, and A. Benslimane, ‘‘Automatic detection for privacy
violations in Android applications,’’ IEEE Internet Things J., vol. 9, no. 8,
pp. 6159–6172, Apr. 2022.

[16] R. Baalous and R. Poet, ‘‘Utilizing sentence embedding for dangerous
permissions detection in Android apps’ privacy policies,’’ Int. J. Inf. Secur.
Privacy, vol. 15, no. 1, pp. 173–189, Jan. 2021.

[17] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why should I trust you?’:
Explaining the predictions of any classifier,’’ in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, San Francisco, CA, USA,
Aug. 2016, pp. 1135–1144.

[18] M. S. Rahman, P. Naghavi, B. Kojusner, S. Afroz, B. Williams,
S. Rampazzi, and V. Bindschaedler. (Aug. 2022). MPP-270: Annotated
Policy Corpus to Map Between Permission and Privacy Disclosures.
[Online]. Available: https://sites.google.com/view/permpress/

[19] M. Theoharidou, A. Mylonas, and D. Gritzalis, ‘‘A risk assessment method
for smartphones,’’ in Proc. IFIP Int. Inf. Secur. Conf. Berlin, Germany:
Springer, 2012, pp. 443–456.

[20] Android Developers. Permissions on Android. Accessed:
Aug. 29, 2021. [Online]. Available: https://developer.android.com/
guide/topics/permissions/overview

[21] P. Voigt and A. Von dem Bussche, ‘‘The EU general data protection regu-
lation (GDPR),’’ in A Practical Guide, vol. 10, 1st Ed. Cham, Switzerland:
Springer, 2017, pp. 10–5555.

[22] G. Hadjipetrova and H. G. Poteat, ‘‘States are coming to the force
of privacy in the digital era,’’ Landslide, vol. 6, no. 6, pp. 13–71,
Jul./Aug. 2014.

[23] W. Stallings, ‘‘Handling of personal information and deidentified,
aggregated, and pseudonymized information under the California con-
sumer privacy act,’’ IEEE Secur. Privacy, vol. 18, no. 1, pp. 61–64,
Jan. 2020.

[24] Federal Trade Commission, ‘‘Children’s online privacy protection
rule (‘COPPA’),’’ Children’s Online Privacy Protection Act, vol. 15,
pp. 6501–6505, 1998. Accessed: Dec. 22, 2021. [Online]. Available:
https://www.ftc.gov/legal-library/browse/rules/childrens-online-privacy-
protection-rule-coppa

[25] Google PlayStore. (2020). Prepare Your APP for Review—Play
Console Help. Accessed: May 6, 2021. [Online]. Available:
https://support.google.com/googleplay/android-developer/answer/
9859455?hl=en

[26] TermsFeed. Do I Need Separate Privacy Policies For My Web-
site and Mobile App?. Accessed: Jul. 7, 2021. [Online]. Available:
https://www.termsfeed.com/blog/separate-privacy-policies-website-app/

[27] C. Castelluccia, S. Guerses, M. Hansen, J. Hoepman, J. van Hoboken,
B. Vieira. (2017). Privacy and Data Protection in Mobile
Applications: A study on the App Development Ecosystem and
the Technical Implementation of GDPR. [Online]. Available:
https://www.enisa.europa.eu/publications/privacy-and-data-protection-in-
mobile-applications/at_ 1149 download/fullReport

[28] S. Bird and E. Loper, ‘‘NLTK: The natural language toolkit,’’ in Proc. ACL
Interact. Poster Demonstration Sessions. Barcelona, Spain: Association
Computational Linguistics, 2004, pp. 214–217.

[29] A. Desnos and G. Gueguen. AndroGuard: Reverse Engineering, Malware
and Goodware Analysis of Android Applications. Accessed: Jun. 24, 2022.
[Online]. Available: https://github.com/androguard/androguard

[30] Android Developers. Android API Reference |

Android.Manifest.Permission. Accessed: Mar. 24, 2021. [Online]. Avail-
able: https://developer.android.com/reference/android/Manifest.permission

[31] J. Reardon, A. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, ‘‘50 ways to leak your data: An exploration of apps’
circumvention of the Android permissions system,’’ in Proc. 28th USENIX
Secur. Symp., 2019, pp. 603–620.

[32] P. Calciati, K. Kuznetsov, A. Gorla, and A. Zeller, ‘‘Automatically granted
permissions in Android apps: An empirical study on their prevalence and
on the potential threats for privacy,’’ in Proc. 17th Int. Conf. Mining Softw.
Repositories, Jun. 2020, pp. 114–124.

[33] M. L. McHugh, ‘‘Interrater reliability: The Kappa statistic,’’ Biochem.
Med., vol. 22, no. 3, pp. 276–282, 2012.

[34] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, ‘‘Bag of tricks
for efficient text classification,’’ in Proc. 15th Conf. Eur. Chap-
ter Assoc. Comput. Linguistics, Valencia, Spain, vol. 2, Apr. 2017,
pp. 427–431.

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Tech-
nol., vol. 1, Jun. 2019, pp. 4171–4186.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[37] H. T. Madabushi, E. Kochkina, and M. Castelle, ‘‘Cost-sensitive BERT for
generalisable sentence classification on imbalanced data,’’ in Proc. 2nd
Workshop Natural Lang. Process. Internet Freedom, Censorship, Disin-
formation, Propaganda. Hong Kong, China: Association Computational
Linguistics, 2019, pp. 125–134.

[38] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, and J. Davison, ‘‘Trans-
formers: State-of-the-art natural language processing,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process., Syst. Demonstrations, 2020,
pp. 38–45.

[39] C. Sun, X. Qiu, Y. Xu, and X. Huang, ‘‘How to fine-tune BERT for
text classification?’’ in Proc. China Nat. Conf. Chin. Comput. Linguistics.
Cham, Switzerland: Springer, 2019, pp. 194–206.

[40] Firebase. Firebase Cloud Messaging | Firebase Docu-
mentation. Accessed: Nov. 29, 2021. [Online]. Available:
https://firebase.google.com/docs/cloud-messaging/

[41] M. Pagliardini, P. Gupta, and M. Jaggi, ‘‘Unsupervised learning of sen-
tence embeddings using compositional N-gram features,’’ in Proc. Conf.
North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol.
Stroudsburg, PA, USA: Association Computational Linguistics, Jun. 2018,
pp. 528–540.

[42] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

[43] S. Wilson, F. Schaub, A. A. Dara, F. Liu, S. Cherivirala, P. G. Leon,
M. S. Andersen, S. Zimmeck, K. M. Sathyendra, N. C. Russell, and
T. B. Norton, ‘‘The creation and analysis of a website privacy policy
corpus,’’ in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics, 2016,
pp. 1330–1340.

[44] J. R. Reidenberg, T. Breaux, L. F. Cranor, B. French, A. Grannis, J. Graves,
F. Liu, A.McDonald, T. Norton, R. Ramanath, N. C. Russell, N. Sadeh, and
F. Schaub, ‘‘Disagreeable privacy policies: Mismatches between meaning
and userss understanding,’’ Berkeley Tech. LJ, vol. 30, no. 1, p. 39, Spring
2015.

[45] Statista. (Nov. 2020).Mobile Operating Systems Market Share Worldwide
From Jan. 2012 To October 2020. Accessed: Dec. 2, 2020. [Online].
Available: https://www.statista.com/statistics/272698/global-market-
share-held-by-mobile-operating-systems-since-2009/

VOLUME 10, 2022 89267

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

[46] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, ‘‘Android permis-
sions demystified,’’ in Proc. 18th ACM Conf. Comput. Commun. Secur.
(CCS), 2011, pp. 627–638.

[47] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, ‘‘PScout: Analyzing the
Android permission specification,’’ inProc. ACMConf. Comput. Commun.
Secur. (CCS), 2012, pp. 217–228.

[48] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisgerber,
‘‘On demystifying the Android application framework: Re-visiting
Android permission specification analysis,’’ in Proc. 25th USENIX Secur.
Symp., 2016, pp. 1101–1118.

[49] A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon, ‘‘Static analysis for
extracting permission checks of a large scale framework: The challenges
and solutions for analyzing Android,’’ IEEE Trans. Softw. Eng., vol. 40,
no. 6, pp. 617–632, Jun. 2014.

[50] K. Sharma andB. B. Gupta, ‘‘Mitigation and risk factor analysis of Android
applications,’’ Comput. Elect. Eng., vol. 71, pp. 416–430, Oct. 2018.

[51] G. Shrivastava and P. Kumar, ‘‘SensDroid: Analysis for malicious activity
risk of Android application,’’ Multimedia Tools Appl., vol. 78, no. 24,
pp. 35713–35731, Dec. 2019.

[52] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross,
and G. Stringhini, ‘‘MaMaDroid: Detecting Android malware by building
Markov chains of behavioral models,’’ ACM Trans. Priv. Secur., vol. 22,
no. 2, pp. 1–16, Apr. 2019.

[53] X. Liu, J. Liu, S. Zhu, W. Wang, and X. Zhang, ‘‘Privacy risk analysis and
mitigation of analytics libraries in the Android ecosystem,’’ IEEE Trans.
Mobile Comput., vol. 19, no. 5, pp. 1184–1199, May 2020.

[54] H.-J. Zhu, Z.-H. You, Z.-X. Zhu, W.-L. Shi, X. Chen, and L. Cheng,
‘‘DroidDet: Effective and robust detection of Android malware using static
analysis along with rotation forest model,’’ Neurocomputing, vol. 272,
pp. 638–646, Jan. 2018.

[55] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu,
‘‘SAMADroid: A novel 3-level hybrid malware detection model for
Android operating system,’’ IEEE Access, vol. 6, pp. 4321–4339, 2018.

[56] H. Kim, T. Cho, G.-J. Ahn, and J. H. Yi, ‘‘Risk assessment of mobile
applications based onmachine learnedmalware dataset,’’Multimedia Tools
Appl., vol. 77, no. 4, pp. 5027–5042, Feb. 2018.

[57] K. Sharma and B. B. Gupta, ‘‘Towards privacy risk analysis in Android
applications usingmachine learning approaches,’’ Int. J. E-ServicesMobile
Appl., vol. 11, no. 2, pp. 1–21, Apr. 2019.

[58] W. Wang, M. Zhao, Z. Gao, G. Xu, H. Xian, Y. Li, and X. Zhang, ‘‘Con-
structing features for detecting Android malicious applications: Issues,
taxonomy and directions,’’ IEEE Access, vol. 7, pp. 67602–67631, 2019.

[59] G. Shrivastava and P. Kumar, ‘‘Android application behavioural analysis
for data leakage,’’ Exp. Syst., vol. 38, no. 1, Jan. 2021, Art. no. e12468.

[60] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang, ‘‘SUPOR:
Precise and scalable sensitive user input detection for Android apps,’’ in
Proc. 24th USENIX Secur. Symp., 2015, pp. 977–992.

[61] Y. Nan, Z. Yang, M. Yang, S. Zhou, Y. Zhang, G. Gu, X.Wang, and L. Sun,
‘‘Identifying user-input privacy in mobile applications at a large scale,’’
IEEE Trans. Inf. Forensics Security, vol. 12, no. 3, pp. 647–661,Mar. 2017.

[62] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux, and J. Niu,
‘‘GUILeak: Tracing privacy policy claims on user input data for Android
applications,’’ in Proc. 40th Int. Conf. Softw. Eng., May 2018, pp. 37–47.

[63] L. L. Zhang, C.-J. M. Liang, Z. L. Li, Y. Liu, F. Zhao, and E. Chen,
‘‘Characterizing privacy risks of mobile apps with sensitivity analysis,’’
IEEE Trans. Mobile Comput., vol. 17, no. 2, pp. 279–292, Feb. 2018.

[64] X. Xiao, X. Wang, Z. Cao, H. Wang, and P. Gao, ‘‘IconIntent: Automatic
identification of sensitive UI widgets based on icon classification for
Android apps,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE),
May 2019, pp. 257–268.

[65] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao, Z. Liu,
F. Xu, and J. Lu, ‘‘DeepIntent: Deep icon-behavior learning for detecting
intention-behavior discrepancy in mobile apps,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Nov. 2019, pp. 2421–2436.

[66] P. Rahul, X. Xiao, W. Yang, W. Enck, and T. Xie, ‘‘WHYPER: Towards
automating risk assessment of mobile applications,’’ in Proc. 22nd
USENIX Secur. Symp., 2013, pp. 527–542.

[67] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, ‘‘Checking app behavior
against app descriptions,’’ in Proc. 36th Int. Conf. Softw. Eng., May 2014,
pp. 1025–1035.

[68] L. Yu, X. Luo, C. Qian, S. Wang, and H. K. N. Leung, ‘‘Enhancing
the description-to-behavior fidelity in Android apps with privacy policy,’’
IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 834–854, Sep. 2018.

[69] A. Sunyaev, T. Dehling, P. L. Taylor, and K. D. Mandl, ‘‘Availability and
quality of mobile health app privacy policies,’’ J. Amer. Med. Inform.
Assoc., vol. 22, no. 1, pp. 28–33, Apr. 2015.

[70] L. Shipp and J. Blasco, ‘‘How private is your period?: A systematic analysis
of menstrual app privacy policies,’’ Proc. Privacy Enhancing Technol.,
vol. 2020, no. 4, pp. 491–510, Oct. 2020.

[71] A. Feal, P. Calciati, N. Vallina-Rodriguez, C. Troncoso, and A. Gorla,
‘‘Angel or devil? A privacy study of mobile parental control apps,’’ Proc.
Privacy Enhancing Technol., vol. 2020, no. 2, pp. 314–335, 2020.

[72] M. M. H. Onik, C.-S. Kim, N.-Y. Lee, and J. Yang, ‘‘Personal information
classification on aggregated Android application’s permissions,’’ Appl.
Sci., vol. 9, no. 19, p. 3997, Sep. 2019.

MUHAMMAD SAJIDUR RAHMAN received the
M.Sc. degree in computer science from Kansas
State University, in 2017. He is currently pursuing
the Ph.D. degree with the Department of Com-
puter and Information Science and Engineering,
University of Florida. Previously, he worked as a
Software Engineer at Fintech industry for over four
years. His research interests include intersection of
software security, privacy engineering, threat mod-
eling, NLP/ML, and human-centered computing.

See sajid-rahman.com for more details.

PIROUZ NAGHAVI (Graduate Student Member,
IEEE) received the B.A.Sc. degree in mechan-
ical engineering from the University of British
Columbia, Canada, in 2015, and theM.S. degree in
electrical and computer engineering from the Uni-
versity of Washington, USA, in 2020. He is cur-
rently pursuing the Ph.D. degreewith the School of
Computer and Information Science and Engineer-
ing, University of Florida, USA.His research inter-
ests include static and dynamic analysis of mobile

systems, cyber-physical systems security, machine learning in privacy preser-
vation technologies, side-channel information recovery, and security.

BLAS KOJUSNER received the B.Sc. degree in
computer science from the University of Florida,
in 2020, where he is currently pursuing the
M.Sc. degree with the Department of Computer
and Information Science and Engineering. His
research interests include mobile systems security,
reverse engineering, and data privacy.

89268 VOLUME 10, 2022

M. S. Rahman et al.: PermPress: Machine Learning-Based Pipeline to Evaluate Permissions

SADIA AFROZ is currently a Staff AI Scientist at
Avast Software and a Principal Investigator at the
International Computer Science Institute (ICSI).
Her research interests include anti-censorship,
anonymity, and adversarial learning. She received
the Best Student Paper Award at the 2012 Pri-
vacy Enhancing Technology Symposium (PETS),
the 2013 Privacy Enhancing Technology (PET)
Award for her work on adversarial authorship attri-
bution, and the 2014 ACM SIGSAC Dissertation

Award (runner-up). See her https://www1.icsi.berkeley.edu/∼sadia/website
for details.

BYRON WILLIAMS received the Ph.D. degree
in computer science from the Mississippi State
University, in 2009. He is currently an Assistant
Professor with the Department of Computer and
Information Science and Engineering, University
of Florida. His research has focused on the inter-
section of software engineering and cybersecurity.
His current research interests include investigat-
ing approaches to secure software development,
vulnerability assessment using static and dynamic

analysis, and security modeling applying statistical and machine learning
techniques.

SARA RAMPAZZI (Member, IEEE) is currently
an Assistant Professor at the Department of Com-
puter and Information Science and Engineer-
ing, University of Florida. Her research interests
include cyber-physical systems security, embed-
ded systems design,modeling, and simulationwith
applications in healthcare, autonomous systems,
and the Internet of Things. She has investigates
security and privacy risks and designs defense
strategies for trustworthy cyber-physical systems

despite emerging attacks. Find out more on sararampazzi.com.

VINCENT BINDSCHAEDLER (Member, IEEE)
received the Ph.D. degree in computer science
from the University of Illinois at Urbana–
Champaign, in 2018. He is currently an Assis-
tant Professor with the Department of Computer
and Information Science and Engineering, Uni-
versity of Florida. His research interests include
data privacy, applied cryptography, and privacy-
preserving technologies. His current work focuses
on emerging problems at the intersection of

machine learning with security and privacy.

VOLUME 10, 2022 89269

sararampazzi.com

